Positive solutions for (p, 2)-equations with superlinear reaction and a concave boundary term
We consider a nonlinear boundary value problem driven by the (p, 2)- Laplacian, with a (p − 1)-superlinear reaction and a parametric concave boundary term (a “concave-convex” problem). Using variational tools (critical point theory) together with truncation and comparison techniques, we prove a bifu...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2020
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Pozitív megoldás, Differenciaegyenlet |
doi: | 10.14232/ejqtde.2020.1.4 |
Online Access: | http://acta.bibl.u-szeged.hu/66422 |
Tartalmi kivonat: | We consider a nonlinear boundary value problem driven by the (p, 2)- Laplacian, with a (p − 1)-superlinear reaction and a parametric concave boundary term (a “concave-convex” problem). Using variational tools (critical point theory) together with truncation and comparison techniques, we prove a bifurcation type theorem describing the changes in the set of positive solutions as the parameter λ > 0 varies. We also show that for every admissible parameter λ > 0, the problem has a minimal positive solution uλ and determine the monotonicity and continuity properties of the map λ 7→ uλ. |
---|---|
ISSN: | 1417-3875 |