Positive solutions for (p, 2)-equations with superlinear reaction and a concave boundary term

We consider a nonlinear boundary value problem driven by the (p, 2)- Laplacian, with a (p − 1)-superlinear reaction and a parametric concave boundary term (a “concave-convex” problem). Using variational tools (critical point theory) together with truncation and comparison techniques, we prove a bifu...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Papageorgiou Nikolaos S.
Scapellato Andrea
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Pozitív megoldás, Differenciaegyenlet
doi:10.14232/ejqtde.2020.1.4

Online Access:http://acta.bibl.u-szeged.hu/66422
Leíró adatok
Tartalmi kivonat:We consider a nonlinear boundary value problem driven by the (p, 2)- Laplacian, with a (p − 1)-superlinear reaction and a parametric concave boundary term (a “concave-convex” problem). Using variational tools (critical point theory) together with truncation and comparison techniques, we prove a bifurcation type theorem describing the changes in the set of positive solutions as the parameter λ > 0 varies. We also show that for every admissible parameter λ > 0, the problem has a minimal positive solution uλ and determine the monotonicity and continuity properties of the map λ 7→ uλ.
ISSN:1417-3875