Positive solutions for (p, 2)-equations with superlinear reaction and a concave boundary term

We consider a nonlinear boundary value problem driven by the (p, 2)- Laplacian, with a (p − 1)-superlinear reaction and a parametric concave boundary term (a “concave-convex” problem). Using variational tools (critical point theory) together with truncation and comparison techniques, we prove a bifu...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Papageorgiou Nikolaos S.
Scapellato Andrea
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Pozitív megoldás, Differenciaegyenlet
doi:10.14232/ejqtde.2020.1.4

Online Access:http://acta.bibl.u-szeged.hu/66422
LEADER 01401nas a2200205 i 4500
001 acta66422
005 20211020135207.0
008 200123s2020 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2020.1.4  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Papageorgiou Nikolaos S. 
245 1 0 |a Positive solutions for (p, 2)-equations with superlinear reaction and a concave boundary term  |h [elektronikus dokumentum] /  |c  Papageorgiou Nikolaos S. 
260 |c 2020 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a We consider a nonlinear boundary value problem driven by the (p, 2)- Laplacian, with a (p − 1)-superlinear reaction and a parametric concave boundary term (a “concave-convex” problem). Using variational tools (critical point theory) together with truncation and comparison techniques, we prove a bifurcation type theorem describing the changes in the set of positive solutions as the parameter λ > 0 varies. We also show that for every admissible parameter λ > 0, the problem has a minimal positive solution uλ and determine the monotonicity and continuity properties of the map λ 7→ uλ. 
695 |a Pozitív megoldás, Differenciaegyenlet 
700 0 1 |a Scapellato Andrea  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/66422/1/ejqtde_2020_004.pdf  |z Dokumentum-elérés