Positive solutions for (p, 2)-equations with superlinear reaction and a concave boundary term
We consider a nonlinear boundary value problem driven by the (p, 2)- Laplacian, with a (p − 1)-superlinear reaction and a parametric concave boundary term (a “concave-convex” problem). Using variational tools (critical point theory) together with truncation and comparison techniques, we prove a bifu...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2020
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Pozitív megoldás, Differenciaegyenlet |
doi: | 10.14232/ejqtde.2020.1.4 |
Online Access: | http://acta.bibl.u-szeged.hu/66422 |
LEADER | 01401nas a2200205 i 4500 | ||
---|---|---|---|
001 | acta66422 | ||
005 | 20211020135207.0 | ||
008 | 200123s2020 hu o 0|| zxx d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2020.1.4 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a zxx | ||
100 | 1 | |a Papageorgiou Nikolaos S. | |
245 | 1 | 0 | |a Positive solutions for (p, 2)-equations with superlinear reaction and a concave boundary term |h [elektronikus dokumentum] / |c Papageorgiou Nikolaos S. |
260 | |c 2020 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a We consider a nonlinear boundary value problem driven by the (p, 2)- Laplacian, with a (p − 1)-superlinear reaction and a parametric concave boundary term (a “concave-convex” problem). Using variational tools (critical point theory) together with truncation and comparison techniques, we prove a bifurcation type theorem describing the changes in the set of positive solutions as the parameter λ > 0 varies. We also show that for every admissible parameter λ > 0, the problem has a minimal positive solution uλ and determine the monotonicity and continuity properties of the map λ 7→ uλ. | |
695 | |a Pozitív megoldás, Differenciaegyenlet | ||
700 | 0 | 1 | |a Scapellato Andrea |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/66422/1/ejqtde_2020_004.pdf |z Dokumentum-elérés |