Strongly formal Weierstrass non-integrability for polynomial differential systems in C2

Recently a criterion has been given for determining the weakly formal Weierstrass non-integrability of polynomial differential systems in C2 . Here we extend this criterion for determining the strongly formal Weierstrass non-integrability which includes the weakly formal Weierstrass non-integrabilit...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Giné Jaume
Llibre Jaume
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Liouville integráció, Weierstrass integráció, Differenciaegyenlet
doi:10.14232/ejqtde.2020.1.1

Online Access:http://acta.bibl.u-szeged.hu/66419
Leíró adatok
Tartalmi kivonat:Recently a criterion has been given for determining the weakly formal Weierstrass non-integrability of polynomial differential systems in C2 . Here we extend this criterion for determining the strongly formal Weierstrass non-integrability which includes the weakly formal Weierstrass non-integrability of polynomial differential systems in C2 . The criterion is based on the solutions of the form y = f(x) with f(x) ∈ C[[x]] of the differential system whose integrability we are studying. The results are applied to a differential system that contains the famous force-free Duffing and the Duffing–Van der Pol oscillators.
ISSN:1417-3875