A global bifurcation theorem for a multiparameter positone problem and its application to the one-dimensional perturbed Gelfand problem

We study the global bifurcation and exact multiplicity of positive solutions for u 00(x) + λ fε(u) = 0, − 1 < x < 1, u(−1) = u(1) = 0, where λ > 0 is a bifurcation parameter, ε ∈ Θ is an evolution parameter, and Θ ≡ (σ1, σ2) is an open interval with 0 ≤ σ1 < σ2 ≤ ∞. Under some suitable h...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Huang Shao-Yuan
Hung Kuo-Chih
Wang Shin-Hwa
Dokumentumtípus: Folyóirat
Megjelent: 2019
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Gelfand probléma, Bifurkáció
doi:10.14232/ejqtde.2019.1.99

Online Access:http://acta.bibl.u-szeged.hu/66366
Leíró adatok
Tartalmi kivonat:We study the global bifurcation and exact multiplicity of positive solutions for u 00(x) + λ fε(u) = 0, − 1 < x < 1, u(−1) = u(1) = 0, where λ > 0 is a bifurcation parameter, ε ∈ Θ is an evolution parameter, and Θ ≡ (σ1, σ2) is an open interval with 0 ≤ σ1 < σ2 ≤ ∞. Under some suitable hypotheses on fε , we prove that there exists ε0 ∈ Θ such that, on the (λ, kuk∞)-plane, the bifurcation curve is S-shaped for σ1 < ε < ε0 and is monotone increasing for ε0 ≤ ε < σ2. We give an application to prove global bifurcation of bifurcation curves for the one-dimensional perturbed Gelfand problem.
Terjedelem/Fizikai jellemzők:1-25
ISSN:1417-3875