Inertial manifolds and limit cycles of dynamical systems in Rn
We show that the presence of a two-dimensional inertial manifold for an ordinary differential equation in Rn permits reducing the problem of determining asymptotically orbitally stable limit cycles to the Poincaré–Bendixson theory. In the case n = 3 we implement such a scenario for a model of a sate...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2019
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet - közönséges |
doi: | 10.14232/ejqtde.2019.1.96 |
Online Access: | http://acta.bibl.u-szeged.hu/66363 |
Tartalmi kivonat: | We show that the presence of a two-dimensional inertial manifold for an ordinary differential equation in Rn permits reducing the problem of determining asymptotically orbitally stable limit cycles to the Poincaré–Bendixson theory. In the case n = 3 we implement such a scenario for a model of a satellite rotation around a celestial body of small mass and for a biochemical model. |
---|---|
Terjedelem/Fizikai jellemzők: | 1-11 |
ISSN: | 1417-3875 |