Inertial manifolds and limit cycles of dynamical systems in Rn

We show that the presence of a two-dimensional inertial manifold for an ordinary differential equation in Rn permits reducing the problem of determining asymptotically orbitally stable limit cycles to the Poincaré–Bendixson theory. In the case n = 3 we implement such a scenario for a model of a sate...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Kondratieva Liudmila A.
Romanov Aleksandr V.
Dokumentumtípus: Folyóirat
Megjelent: 2019
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet - közönséges
doi:10.14232/ejqtde.2019.1.96

Online Access:http://acta.bibl.u-szeged.hu/66363
Leíró adatok
Tartalmi kivonat:We show that the presence of a two-dimensional inertial manifold for an ordinary differential equation in Rn permits reducing the problem of determining asymptotically orbitally stable limit cycles to the Poincaré–Bendixson theory. In the case n = 3 we implement such a scenario for a model of a satellite rotation around a celestial body of small mass and for a biochemical model.
Terjedelem/Fizikai jellemzők:1-11
ISSN:1417-3875