Generalizations of the relation of quasisimilarity for operators

In this note we first briefly review the progress on the hyperinvariant subspace problem for operators on Hilbert space made possible by the equivalence relation of ampliation quasisimilarity recently introduced in [7].Then we introduce another equivalence relation, which we call pluquasisimilarity,...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Bercovici Hari
Jung Il Bong
Ko Eungil
Pearcy Carl
Dokumentumtípus: Cikk
Megjelent: 2019
Sorozat:Acta scientiarum mathematicarum 85 No. 3-4
Kulcsszavak:Hiperinvariáns altér, kvázi-hasonlóság
doi:10.14232/actasm-019-765-9

Online Access:http://acta.bibl.u-szeged.hu/66340
Leíró adatok
Tartalmi kivonat:In this note we first briefly review the progress on the hyperinvariant subspace problem for operators on Hilbert space made possible by the equivalence relation of ampliation quasisimilarity recently introduced in [7].Then we introduce another equivalence relation, which we call pluquasisimilarity, with bigger equivalence classes than ampliation quasisimilarity but verydifferent in appearance, which preserves the existence of hyperinvariant sub-spaces for operators, and thus may be useful in the future. We also comparethese with two other equivalence relations, injection-similarity and completeinjection-similarity, introduced long ago by Sz.-Nagy and Foias in [13].
Terjedelem/Fizikai jellemzők:681-691
ISSN:2064-8316