Real normal operators and Williamson’s normal form

A simple proof is provided to show that any bounded normal operator on a real Hilbert space is orthogonally equivalent to its transpose (adjoint). Astructure theorem for invertible skew-symmetric operators, which is analogous to the finite-dimensional situation, is also proved using elementary techn...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Bhat B, V, Rajama
John Tiju Cherian
Dokumentumtípus: Cikk
Megjelent: 2019
Sorozat:Acta scientiarum mathematicarum 85 No. 3-4
Kulcsszavak:Spektrális tétel - normál operátor
doi:10.14232/actasm-018-570-5

Online Access:http://acta.bibl.u-szeged.hu/66329
LEADER 01346nab a2200217 i 4500
001 acta66329
005 20210325153447.0
008 200423s2019 hu o 0|| zxx d
022 |a 2064-8316 
024 7 |a 10.14232/actasm-018-570-5  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Bhat B, V, Rajama 
245 1 0 |a Real normal operators and Williamson’s normal form  |h [elektronikus dokumentum] /  |c  Bhat B, V, Rajama 
260 |c 2019 
300 |a 507-518 
490 0 |a Acta scientiarum mathematicarum  |v 85 No. 3-4 
520 3 |a A simple proof is provided to show that any bounded normal operator on a real Hilbert space is orthogonally equivalent to its transpose (adjoint). Astructure theorem for invertible skew-symmetric operators, which is analogous to the finite-dimensional situation, is also proved using elementary techniques. The second result is used to establish the main theorem of this article, which is a generalization of Williamson’s normal form for bounded positive operators on infinite-dimensional separable Hilbert spaces. This has applications in the study of infinite mode Gaussian states. 
695 |a Spektrális tétel - normál operátor 
700 0 1 |a John Tiju Cherian  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/66329/1/math_085_numb_003-004_507-518.pdf  |z Dokumentum-elérés