Real normal operators and Williamson’s normal form
A simple proof is provided to show that any bounded normal operator on a real Hilbert space is orthogonally equivalent to its transpose (adjoint). Astructure theorem for invertible skew-symmetric operators, which is analogous to the finite-dimensional situation, is also proved using elementary techn...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2019
|
Sorozat: | Acta scientiarum mathematicarum
85 No. 3-4 |
Kulcsszavak: | Spektrális tétel - normál operátor |
doi: | 10.14232/actasm-018-570-5 |
Online Access: | http://acta.bibl.u-szeged.hu/66329 |
LEADER | 01346nab a2200217 i 4500 | ||
---|---|---|---|
001 | acta66329 | ||
005 | 20210325153447.0 | ||
008 | 200423s2019 hu o 0|| zxx d | ||
022 | |a 2064-8316 | ||
024 | 7 | |a 10.14232/actasm-018-570-5 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a zxx | ||
100 | 1 | |a Bhat B, V, Rajama | |
245 | 1 | 0 | |a Real normal operators and Williamson’s normal form |h [elektronikus dokumentum] / |c Bhat B, V, Rajama |
260 | |c 2019 | ||
300 | |a 507-518 | ||
490 | 0 | |a Acta scientiarum mathematicarum |v 85 No. 3-4 | |
520 | 3 | |a A simple proof is provided to show that any bounded normal operator on a real Hilbert space is orthogonally equivalent to its transpose (adjoint). Astructure theorem for invertible skew-symmetric operators, which is analogous to the finite-dimensional situation, is also proved using elementary techniques. The second result is used to establish the main theorem of this article, which is a generalization of Williamson’s normal form for bounded positive operators on infinite-dimensional separable Hilbert spaces. This has applications in the study of infinite mode Gaussian states. | |
695 | |a Spektrális tétel - normál operátor | ||
700 | 0 | 1 | |a John Tiju Cherian |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/66329/1/math_085_numb_003-004_507-518.pdf |z Dokumentum-elérés |