Real normal operators and Williamson’s normal form

A simple proof is provided to show that any bounded normal operator on a real Hilbert space is orthogonally equivalent to its transpose (adjoint). Astructure theorem for invertible skew-symmetric operators, which is analogous to the finite-dimensional situation, is also proved using elementary techn...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Bhat B, V, Rajama
John Tiju Cherian
Dokumentumtípus: Cikk
Megjelent: 2019
Sorozat:Acta scientiarum mathematicarum 85 No. 3-4
Kulcsszavak:Spektrális tétel - normál operátor
doi:10.14232/actasm-018-570-5

Online Access:http://acta.bibl.u-szeged.hu/66329
Leíró adatok
Tartalmi kivonat:A simple proof is provided to show that any bounded normal operator on a real Hilbert space is orthogonally equivalent to its transpose (adjoint). Astructure theorem for invertible skew-symmetric operators, which is analogous to the finite-dimensional situation, is also proved using elementary techniques. The second result is used to establish the main theorem of this article, which is a generalization of Williamson’s normal form for bounded positive operators on infinite-dimensional separable Hilbert spaces. This has applications in the study of infinite mode Gaussian states.
Terjedelem/Fizikai jellemzők:507-518
ISSN:2064-8316