Geometry of spaces of compact operators
For non-reflexive Banach spaces X, Y, for a very smooth point in the space of compact linear operators K(X, Y), we give several sufficient conditionsfor the adjoint to be a very smooth point in K(Y∗, X∗). We exhibit a new class of extreme points in the dual unit ball of injective product spaces. The...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2019
|
Sorozat: | Acta scientiarum mathematicarum
85 No. 3-4 |
Kulcsszavak: | Topológiai vektortér, Banach-tér |
doi: | 10.14232/actasm-018-809-2 |
Online Access: | http://acta.bibl.u-szeged.hu/66328 |
Tartalmi kivonat: | For non-reflexive Banach spaces X, Y, for a very smooth point in the space of compact linear operators K(X, Y), we give several sufficient conditionsfor the adjoint to be a very smooth point in K(Y∗, X∗). We exhibit a new class of extreme points in the dual unit ball of injective product spaces. These ideas are also related to Birkhoff–James orthogonality in spaces of operators. |
---|---|
Terjedelem/Fizikai jellemzők: | 495-505 |
ISSN: | 2064-8316 |