Functional equations characterizing σ-derivations
The main purpose of this article is to prove the following result: Forintegers m,n with m≥0,n≥0, and m+n6= 0, let R be an(m+n+2)!-torsionfree prime ring with the identity elemente. Suppose thatd, σ:R → Rare two additive mappings such that σ is a monomorphism with σ(e) =e, and d(R)⊆σ(R). If d and σ s...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2019
|
Sorozat: | Acta scientiarum mathematicarum
85 No. 3-4 |
Kulcsszavak: | Funkcionálegyenletek - deriváció |
doi: | 10.14232/actasm-018-594-6 |
Online Access: | http://acta.bibl.u-szeged.hu/66325 |
LEADER | 01269nab a2200217 i 4500 | ||
---|---|---|---|
001 | acta66325 | ||
005 | 20210325153449.0 | ||
008 | 200423s2019 hu o 0|| zxx d | ||
022 | |a 2064-8316 | ||
024 | 7 | |a 10.14232/actasm-018-594-6 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a zxx | ||
100 | 1 | |a Hosseini Amin | |
245 | 1 | 0 | |a Functional equations characterizing σ-derivations |h [elektronikus dokumentum] / |c Hosseini Amin |
260 | |c 2019 | ||
300 | |a 431-440 | ||
490 | 0 | |a Acta scientiarum mathematicarum |v 85 No. 3-4 | |
520 | 3 | |a The main purpose of this article is to prove the following result: Forintegers m,n with m≥0,n≥0, and m+n6= 0, let R be an(m+n+2)!-torsionfree prime ring with the identity elemente. Suppose thatd, σ:R → Rare two additive mappings such that σ is a monomorphism with σ(e) =e, and d(R)⊆σ(R). If d and σ satisfy both of the equations d(xy)(σ(z)−z)−d(x)(σ(yz)−σ(y)z) +σ(xy)d(z)−σ(x)(d(yz)−d(y)z) = O and d(xm+n+1) = (m+n+ 1)σ(xm)d(x)σ(xn)for allx, y, z∈ R, then d is a σ-derivation. | |
695 | |a Funkcionálegyenletek - deriváció | ||
700 | 0 | 1 | |a Karizaki Mehdi Mohammadzadeh |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/66325/1/math_085_numb_003-004_431-440.pdf |z Dokumentum-elérés |