Functional equations characterizing σ-derivations

The main purpose of this article is to prove the following result: Forintegers m,n with m≥0,n≥0, and m+n6= 0, let R be an(m+n+2)!-torsionfree prime ring with the identity elemente. Suppose thatd, σ:R → Rare two additive mappings such that σ is a monomorphism with σ(e) =e, and d(R)⊆σ(R). If d and σ s...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Hosseini Amin
Karizaki Mehdi Mohammadzadeh
Dokumentumtípus: Cikk
Megjelent: 2019
Sorozat:Acta scientiarum mathematicarum 85 No. 3-4
Kulcsszavak:Funkcionálegyenletek - deriváció
doi:10.14232/actasm-018-594-6

Online Access:http://acta.bibl.u-szeged.hu/66325
LEADER 01269nab a2200217 i 4500
001 acta66325
005 20210325153449.0
008 200423s2019 hu o 0|| zxx d
022 |a 2064-8316 
024 7 |a 10.14232/actasm-018-594-6  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Hosseini Amin 
245 1 0 |a Functional equations characterizing σ-derivations  |h [elektronikus dokumentum] /  |c  Hosseini Amin 
260 |c 2019 
300 |a 431-440 
490 0 |a Acta scientiarum mathematicarum  |v 85 No. 3-4 
520 3 |a The main purpose of this article is to prove the following result: Forintegers m,n with m≥0,n≥0, and m+n6= 0, let R be an(m+n+2)!-torsionfree prime ring with the identity elemente. Suppose thatd, σ:R → Rare two additive mappings such that σ is a monomorphism with σ(e) =e, and d(R)⊆σ(R). If d and σ satisfy both of the equations d(xy)(σ(z)−z)−d(x)(σ(yz)−σ(y)z) +σ(xy)d(z)−σ(x)(d(yz)−d(y)z) = O and d(xm+n+1) = (m+n+ 1)σ(xm)d(x)σ(xn)for allx, y, z∈ R, then d is a σ-derivation. 
695 |a Funkcionálegyenletek - deriváció 
700 0 1 |a Karizaki Mehdi Mohammadzadeh  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/66325/1/math_085_numb_003-004_431-440.pdf  |z Dokumentum-elérés