Functional equations characterizing σ-derivations

The main purpose of this article is to prove the following result: Forintegers m,n with m≥0,n≥0, and m+n6= 0, let R be an(m+n+2)!-torsionfree prime ring with the identity elemente. Suppose thatd, σ:R → Rare two additive mappings such that σ is a monomorphism with σ(e) =e, and d(R)⊆σ(R). If d and σ s...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Hosseini Amin
Karizaki Mehdi Mohammadzadeh
Dokumentumtípus: Cikk
Megjelent: 2019
Sorozat:Acta scientiarum mathematicarum 85 No. 3-4
Kulcsszavak:Funkcionálegyenletek - deriváció
doi:10.14232/actasm-018-594-6

Online Access:http://acta.bibl.u-szeged.hu/66325
Leíró adatok
Tartalmi kivonat:The main purpose of this article is to prove the following result: Forintegers m,n with m≥0,n≥0, and m+n6= 0, let R be an(m+n+2)!-torsionfree prime ring with the identity elemente. Suppose thatd, σ:R → Rare two additive mappings such that σ is a monomorphism with σ(e) =e, and d(R)⊆σ(R). If d and σ satisfy both of the equations d(xy)(σ(z)−z)−d(x)(σ(yz)−σ(y)z) +σ(xy)d(z)−σ(x)(d(yz)−d(y)z) = O and d(xm+n+1) = (m+n+ 1)σ(xm)d(x)σ(xn)for allx, y, z∈ R, then d is a σ-derivation.
Terjedelem/Fizikai jellemzők:431-440
ISSN:2064-8316