Numerical study of anisotropic irreversible deposition of extended objects on a triangular lattice
The properties of the anisotropic random sequential adsorption (RSA) of objects of various shapes on a two-dimensional triangular lattice are studied numerically by means of Monte Carlo simulations. The depositing objects are formed by self-avoiding lattice steps. Anisotropy is introduced by positin...
Elmentve itt :
Szerzők: | |
---|---|
Testületi szerző: | |
Dokumentumtípus: | Könyv része |
Megjelent: |
2019
|
Sorozat: | Proceedings of the International Symposium on Analytical and Environmental Problems
|
Kulcsszavak: | Fizika, Kémia |
Online Access: | http://acta.bibl.u-szeged.hu/64817 |
LEADER | 01405naa a2200241 i 4500 | ||
---|---|---|---|
001 | acta64817 | ||
005 | 20220808153730.0 | ||
008 | 200318s2019 hu o 1|| zxx d | ||
020 | |a 978-963-306-702-4 | ||
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a zxx | ||
100 | 1 | |a Lončarević Ivana | |
245 | 1 | 0 | |a Numerical study of anisotropic irreversible deposition of extended objects on a triangular lattice |h [elektronikus dokumentum] / |c Lončarević Ivana |
260 | |c 2019 | ||
300 | |a 179-183 | ||
490 | 0 | |a Proceedings of the International Symposium on Analytical and Environmental Problems | |
520 | 3 | |a The properties of the anisotropic random sequential adsorption (RSA) of objects of various shapes on a two-dimensional triangular lattice are studied numerically by means of Monte Carlo simulations. The depositing objects are formed by self-avoiding lattice steps. Anisotropy is introduced by positing unequal probabilities for orientation of depositing objects along different directions of the lattice. This probability is equal | |
695 | |a Fizika, Kémia | ||
700 | 0 | 2 | |a Budinski-Petković Ljuba |e aut |
700 | 0 | 2 | |a Vrhovac Slobodan |e aut |
700 | 0 | 2 | |a Jakšić Zorica |e aut |
710 | |a International Symposium on Analytical and Environmental Problems (25.) (2019) (Szeged) | ||
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/64817/1/proceedings_of_isaep_2019_179-183.pdf |z Dokumentum-elérés |