Microstructure and thermal characterization of Mo-doped Li6.87Nb2.34Ti5.78O21 solid-solution ceramics

In this work, the microstructure and thermal properties of lithium-niobium-titanium-oxide (Li-Nb-Ti-O) solid-solution ceramics were investigated using the X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and differential scanning calorimetry (DSC) techniques. XRD and...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Ivetić Tamara
Petrović Jelena
Gúth Imre
Čajko Kristina
Lukić-Petrović Svetlana
Testületi szerző: International Symposium on Analytical and Environmental Problems (25.) (2019) (Szeged)
Dokumentumtípus: Könyv része
Megjelent: 2019
Sorozat:Proceedings of the International Symposium on Analytical and Environmental Problems
Kulcsszavak:Kémia
Online Access:http://acta.bibl.u-szeged.hu/64810
Leíró adatok
Tartalmi kivonat:In this work, the microstructure and thermal properties of lithium-niobium-titanium-oxide (Li-Nb-Ti-O) solid-solution ceramics were investigated using the X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and differential scanning calorimetry (DSC) techniques. XRD and SEM analysis confirmed that Li-Nb-Ti-O ceramic sample synthesized by solid-state method reaches the desired composition of so-called Mphase of the Li2O-Nb2O5-TiO2 ternary system (Li6.87Nb2.34Ti5.78O21) that should have excellent microwave dielectric properties. The M-phase was obtained with lower than 1000ºC sintering temperature by doping with MoO3 as flux material, which makes this kind of ceramic material suitable for the low temperature co-fired ceramic (LTCC) technology applications. The heat flow data obtained from DSC measurement were used to calculate the specific heat capacity (Cp) of synthesized Li6.87Nb2.34Ti5.78O21 solid-solution ceramics, which is the property of a material that tells about its stability and functionality.
Terjedelem/Fizikai jellemzők:154-158
ISBN:978-963-306-702-4