A uniqueness result for a Schrödinger-Poisson system with strong singularity

In this paper, we consider the following Schrödinger–Poisson system with strong singularity −∆u + φu = f(x)u , x ∈ Ω, −∆φ = u 2 , x ∈ Ω, u > 0, x ∈ Ω, u = φ = 0, x ∈ ∂Ω, where Ω ⊂ R3 is a smooth bounded domain, γ > 1, f ∈ L 1 (Ω) is a positive function (i.e. f(x) > 0 a.e. in Ω). A necessary...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Yu Shengbin
Chen Jianqing
Dokumentumtípus: Folyóirat
Megjelent: 2019
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Schrödinger-Poisson rendszer
doi:10.14232/ejqtde.2019.1.87

Online Access:http://acta.bibl.u-szeged.hu/64731
Leíró adatok
Tartalmi kivonat:In this paper, we consider the following Schrödinger–Poisson system with strong singularity −∆u + φu = f(x)u , x ∈ Ω, −∆φ = u 2 , x ∈ Ω, u > 0, x ∈ Ω, u = φ = 0, x ∈ ∂Ω, where Ω ⊂ R3 is a smooth bounded domain, γ > 1, f ∈ L 1 (Ω) is a positive function (i.e. f(x) > 0 a.e. in Ω). A necessary and sufficient condition on the existence and uniqueness of positive weak solution of the system is obtained. The results supplement the main conclusions in recent literature.
Terjedelem/Fizikai jellemzők:1-15
ISSN:1417-3875