Symmetric nonlinear functional differential equations at resonance

It is shown that a class of symmetric solutions of the scalar nonlinear functional differential equations at resonance with deviations from R → R can be investigated by using the theory of boundary-value problems. Conditions on a solvability and unique solvability are established. Examples are prese...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Dilna Nataliya
Fečkan Michal
Solovyov Mykola
Wang JinRong
Dokumentumtípus: Folyóirat
Megjelent: 2019
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet - nemlineáris
doi:10.14232/ejqtde.2019.1.76

Online Access:http://acta.bibl.u-szeged.hu/64720
Leíró adatok
Tartalmi kivonat:It is shown that a class of symmetric solutions of the scalar nonlinear functional differential equations at resonance with deviations from R → R can be investigated by using the theory of boundary-value problems. Conditions on a solvability and unique solvability are established. Examples are presented to illustrate given results. Keywords: symmetric solution, solvability, Lyapunov–Schmidt reduction method.
Terjedelem/Fizikai jellemzők:1-16
ISSN:1417-3875