Weak upper semicontinuity of pullback attractors for nonautonomous reaction-diffusion equations
We consider nonautonomous reaction-diffusion equations with variable exponents and large diffusion and we prove continuity of the flow and weak upper semicontinuity of a family of pullback attractors when the exponents go to 2 in L.
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2019
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciaegyenlet, Határérték probléma |
doi: | 10.14232/ejqtde.2019.1.68 |
Online Access: | http://acta.bibl.u-szeged.hu/64712 |
Tartalmi kivonat: | We consider nonautonomous reaction-diffusion equations with variable exponents and large diffusion and we prove continuity of the flow and weak upper semicontinuity of a family of pullback attractors when the exponents go to 2 in L. |
---|---|
Terjedelem/Fizikai jellemzők: | 1-14 |
ISSN: | 1417-3875 |