Characterization of self-adjoint domains for regular even order C-symmetric differential operators
Let C be a skew-diagonal constant matrix satisfying C −1 = −C = C . We characterize the self-adjoint domains for regular even order C-symmetric differential operators with two-point boundary conditions. The previously known characterizations are a special case of this one.
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2019
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet, Operátorok |
doi: | 10.14232/ejqtde.2019.1.62 |
Online Access: | http://acta.bibl.u-szeged.hu/62286 |
Tartalmi kivonat: | Let C be a skew-diagonal constant matrix satisfying C −1 = −C = C . We characterize the self-adjoint domains for regular even order C-symmetric differential operators with two-point boundary conditions. The previously known characterizations are a special case of this one. |
---|---|
Terjedelem/Fizikai jellemzők: | 1-17 |
ISSN: | 1417-3875 |