The bifurcation of limit cycles of two classes of cubic isochronous systems

In this paper, we study the bifurcation of limit cycles of the periodic annulus of two classes of cubic isochronous systems. By using complete elliptic integrals of the first, second kinds and the Chebyshev criterion, we show that the upper bound for the number of limit cycles which appear from the...

Full description

Saved in:
Bibliographic Details
Main Authors: Shao Yi
Lai Yongzeng
A Chunxiang
Format: Serial
Published: 2019
Series:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Bifurkáció, Perturbáció
doi:10.14232/ejqtde.2019.1.50

Online Access:http://acta.bibl.u-szeged.hu/62274
Description
Summary:In this paper, we study the bifurcation of limit cycles of the periodic annulus of two classes of cubic isochronous systems. By using complete elliptic integrals of the first, second kinds and the Chebyshev criterion, we show that the upper bound for the number of limit cycles which appear from the periodic annuli of the two systems are at least three under cubic perturbations. Moreover, there exists a perturbation that give rise to exactly i limit cycles bifurcating from the period annulus for each i = 0, 1, 2, 3.
Physical Description:1-15
ISSN:1417-3875