Linear operators and conjugations on a Banach space
In this paper we study a conjugation on a Banach space X and show properties of operators concerning conjugation C and show spectral properties of such operators. Next we show spectral properties of an (m, C)-symmetry (isometry) operator T on a complex Banach space X . We prove that, for a C-doubly...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2019
|
Sorozat: | Acta scientiarum mathematicarum
85 No. 1-2 |
Kulcsszavak: | Matematika, Banach tér, Lineáris operátor |
doi: | 10.14232/actasm-018-801-y |
Online Access: | http://acta.bibl.u-szeged.hu/62150 |
Tartalmi kivonat: | In this paper we study a conjugation on a Banach space X and show properties of operators concerning conjugation C and show spectral properties of such operators. Next we show spectral properties of an (m, C)-symmetry (isometry) operator T on a complex Banach space X . We prove that, for a C-doubly commuting pair (T, S), if T is an (m, C)-symmetry (isometry) and S is an (n, C)-symmetry (isometry), then T + S and T S are (m + n − 1, C)- symmetries (isometries). |
---|---|
Terjedelem/Fizikai jellemzők: | 325-336 |
ISSN: | 2064-8316 |