The Bishop-Phelps-Bollobás modulus for operators
A modulus for the Bishop–Phelps–Bollobás property for operators (BPBpo) is formerly introduced in the literature that characterizes whether a pair of Banach spaces enjoys the BPBpo and that also provides the best possible value of the BPBpo for a given pair of Banach spaces that enjoys it. We use it...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2019
|
Sorozat: | Acta scientiarum mathematicarum
85 No. 1-2 |
Kulcsszavak: | Matematika |
doi: | 10.14232/actasm-018-765-5 |
Online Access: | http://acta.bibl.u-szeged.hu/62141 |
Tartalmi kivonat: | A modulus for the Bishop–Phelps–Bollobás property for operators (BPBpo) is formerly introduced in the literature that characterizes whether a pair of Banach spaces enjoys the BPBpo and that also provides the best possible value of the BPBpo for a given pair of Banach spaces that enjoys it. We use it also to show that the BPBpo is hereditary to a class of complemented subspaces that strictly includes the M-summands. We also provide an equivalent reformulation of this modulus. Finally, the continuity properties of this modulus are also discussed. |
---|---|
Terjedelem/Fizikai jellemzők: | 189-201 |
ISSN: | 2064-8316 |