Minimal representations of a finite distributive lattice by principal congruences of a lattice

Let the finite distributive lattice D be isomorphic to the congruence lattice of a finite lattice L. Let Q denote those elements of D that correspond to principal congruences under this isomorphism. Then Q contains 0, 1 ∈ D and all the join-irreducible elements of D. If Q contains exactly these elem...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Grätzer George A.
Lakser Harry
Dokumentumtípus: Cikk
Megjelent: 2019
Sorozat:Acta scientiarum mathematicarum 85 No. 1-2
Kulcsszavak:Matematika
doi:10.14232/actasm-017-060-9

Online Access:http://acta.bibl.u-szeged.hu/62134
Leíró adatok
Tartalmi kivonat:Let the finite distributive lattice D be isomorphic to the congruence lattice of a finite lattice L. Let Q denote those elements of D that correspond to principal congruences under this isomorphism. Then Q contains 0, 1 ∈ D and all the join-irreducible elements of D. If Q contains exactly these elements, we say that L is a minimal representation of D by principal congruences of the lattice L. We characterize finite distributive lattices D with a minimal representation by principal congruences with the property that D has at most two dual atoms.
Terjedelem/Fizikai jellemzők:69-96
ISSN:2064-8316