Ügyfélszolgálati beszélgetések nyelvmodellezése rekurrens neurális hálózatokkal
A spontán, társalgási beszéd leírása a mai napig komoly kihívás elé állítja a gépi beszédfelismerő rendszereket. A témák sokszínűsége és a kevés tanítóadat különösen megnehezíti a nyelvi modellek tanítását. Cikkünkben telefonos ügyfélszolgálati beszélgetéseket modellezük rekurrens LSTM neurális háló...
Elmentve itt :
Szerzők: | |
---|---|
Testületi szerző: | |
Dokumentumtípus: | Könyv része |
Megjelent: |
2019
|
Sorozat: | Magyar Számítógépes Nyelvészeti Konferencia
15 |
Kulcsszavak: | Nyelvészet - számítógép alkalmazása |
Online Access: | http://acta.bibl.u-szeged.hu/59071 |
Tartalmi kivonat: | A spontán, társalgási beszéd leírása a mai napig komoly kihívás elé állítja a gépi beszédfelismerő rendszereket. A témák sokszínűsége és a kevés tanítóadat különösen megnehezíti a nyelvi modellek tanítását. Cikkünkben telefonos ügyfélszolgálati beszélgetéseket modellezük rekurrens LSTM neurális hálózat segítségével, mellyel közel felére sikerült csökkentenünk a perplexitást a hagyományos, count n-gram modellhez képest. Azt találtuk, hogy a rekurrens LSTM akkor is felülmúlja a count modell pontosságát, ha memóriája hosszát alacsonyra korlátozzuk (LSTM n-gram). 10 vagy annál nagyobb fokszámú LSTM n-grammal pedig a korlátozás nélküli LSTM nyelvi modell teljesítménye is megközelíthető. Ez alapján arra következtetünk, hogy a rekurrens neurális nyelvi modellek pontosságának titka a hatékony simításban rejlik, nem a hosszú távú memóriában. Az új, neurális nyelvmodell segítségével nem csak a perplexitást sikerült csökkentenünk, hanem a kapcsolódó beszédfelismerési feladaton a szóhiba-arányt is relatív 4%-kal. |
---|---|
Terjedelem/Fizikai jellemzők: | 23-33 |
ISBN: | 978-963-315-393-2 |