Mély neuronhálós beszédfelismerők GMM-mentes tanítása
Az utóbbi pár évben a beszédfelismerőkben használt rejtett Markov modellekben (hidden Markov model, HMM) az ún. Gauss-keverékmodell (gaussian mixture model, GMM) komponenst leváltották a mély neuronhálók (deep neural network, DNN). Ugyanakkor ezek az új, neuronálókra épülő hibrid HMM/DNN felismerők...
Elmentve itt :
Szerzők: | |
---|---|
Testületi szerző: | |
Dokumentumtípus: | Könyv része |
Megjelent: |
2017
|
Sorozat: | Magyar Számítógépes Nyelvészeti Konferencia
13 |
Kulcsszavak: | Nyelvészet - számítógép alkalmazása |
Online Access: | http://acta.bibl.u-szeged.hu/59007 |
Tartalmi kivonat: | Az utóbbi pár évben a beszédfelismerőkben használt rejtett Markov modellekben (hidden Markov model, HMM) az ún. Gauss-keverékmodell (gaussian mixture model, GMM) komponenst leváltották a mély neuronhálók (deep neural network, DNN). Ugyanakkor ezek az új, neuronálókra épülő hibrid HMM/DNN felismerők számos olyan algoritmust megörököltek, melyeket eredetileg GMM-alapú rendszerekhez fejlesztettek ki, és így optimalitásuk az új környezetben nem garantált. A HMM/DNN modellek `GMM-mentes' tanításához két részfeladatra kell új megoldást adnunk. Az egyik, hogy a mély hálók időben illesztett tanító ímkéket igényelnek, a másik pedig a környezetfüggő állapotok előállítása, amelyre a klasszikus megoldás egy GMM-alapú klaszterezési algoritmus. Bár a HMM/DNN hibridek tanítására léteznek teljes mondatokon dolgozó ún. szekven ia-diszkriminatív tanítóalgoritmusok, ezeket jellemzően sak a tanítás legutolsó fázisában, a modellek �nomhangolására szokták bevetni, míg a tanítás elején HMM/GMM modellekel el®állított és illesztett ímkékből indulnak ki. Jelen ikkünkben viszont megmutatjuk, hogy megfelelő oda�gyeléssel a szekven iatanuló algoritmusok a tanítás legelejétől használhatóak. Az állapotklaszterezési lépésre korábban már javasoltunk egy GMM-mentes megoldást, így a ímkeillesztési feladat megoldásával egy teljesen GMM-mentes tanítási sémához jutottunk. Kísérleti eredményeink azt mutatják, hogy a javasolt megoldás nem sak gyorsabb, mint a hagyományos tanítási módszer, hanem valamivel jobb felismerési pontosságot is eredményez. |
---|---|
Terjedelem/Fizikai jellemzők: | 170-180 |
ISBN: | 978-963-306-518-1 |