Period annulus of the harmonic oscillator with zero cyclicity under perturbations with a homogeneous polynomial field

In this work we prove, using averaging theory at any order in the small perturbation parameter, that the period annulus of the harmonic oscillator has cyclicity zero (no limit cycles bifurcate) when it is perturbed by any fixed homogeneous polynomial field.

Elmentve itt :
Bibliográfiai részletek
Szerzők: García Isaac A.
Maza Susanna
Dokumentumtípus: Folyóirat
Megjelent: 2019
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Oszcillátorok, Perturbáció
doi:10.14232/ejqtde.2019.1.3

Online Access:http://acta.bibl.u-szeged.hu/58114
Leíró adatok
Tartalmi kivonat:In this work we prove, using averaging theory at any order in the small perturbation parameter, that the period annulus of the harmonic oscillator has cyclicity zero (no limit cycles bifurcate) when it is perturbed by any fixed homogeneous polynomial field.
Terjedelem/Fizikai jellemzők:1-6
ISSN:1417-3875