On a class of superlinear nonlocal fractional problems without Ambrosetti–Rabinowitz type conditions
In this note, we deal with the existence of infinitely many solutions for a problem driven by nonlocal integro-differential operators with homogeneous Dirichlet boundary conditions −LKu = λ f(x, u), in Ω, u = 0, in Rn\Ω, where Ω is a smooth bounded domain of Rn and the nonlinear term f satisfies sup...
Elmentve itt :
Szerző: | Zhou Qing-Mei |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2019
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Integrodifferenciál-egyenlet |
doi: | 10.14232/ejqtde.2019.1.17 |
Online Access: | http://acta.bibl.u-szeged.hu/58100 |
Hasonló tételek
-
p-biharmonic equation with Hardy-Sobolev exponent and without the Ambrosetti-Rabinowitz condition
Szerző: Wang Weihua
Megjelent: (2020) -
Existence and multiplicity of nontrivial solutions to the modified Kirchhoff equation without the growth and Ambrosetti-Rabinowitz conditions
Szerző: Wang Zhongxiang, et al.
Megjelent: (2021) -
On the Fucík type problem with integral nonlocal boundary conditions
Szerző: Sergejeva Natalija
Megjelent: (2016) -
On mild solutions to fractional differential equations with nonlocal conditions
Szerző: Chen Lizhen, et al.
Megjelent: (2011) -
Nonlinear q-fractional differential equations with nonlocal and sub-strip type boundary conditions
Szerző: Ahmad Bashir, et al.
Megjelent: (2014)