On a class of superlinear nonlocal fractional problems without Ambrosetti–Rabinowitz type conditions
In this note, we deal with the existence of infinitely many solutions for a problem driven by nonlocal integro-differential operators with homogeneous Dirichlet boundary conditions −LKu = λ f(x, u), in Ω, u = 0, in Rn\Ω, where Ω is a smooth bounded domain of Rn and the nonlinear term f satisfies sup...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2019
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Integrodifferenciál-egyenlet |
doi: | 10.14232/ejqtde.2019.1.17 |
Online Access: | http://acta.bibl.u-szeged.hu/58100 |
Tartalmi kivonat: | In this note, we deal with the existence of infinitely many solutions for a problem driven by nonlocal integro-differential operators with homogeneous Dirichlet boundary conditions −LKu = λ f(x, u), in Ω, u = 0, in Rn\Ω, where Ω is a smooth bounded domain of Rn and the nonlinear term f satisfies superlinear at infinity but does not satisfy the the Ambrosetti–Rabinowitz type condition. The aim is to determine the precise positive interval of λ for which the problem admits at least two nontrivial solutions by using abstract critical point results for an energy functional satisfying the Cerami condition. |
---|---|
Terjedelem/Fizikai jellemzők: | 1-12 |
ISSN: | 1417-3875 |