Lipschitz stability of generalized ordinary differential equations and impulsive retarded differential equations

We consider a class of retarded functional differential equations with preassigned moments of impulsive effect and we study the Lipschitz stability of solutions of these equations using the theory of generalized ordinary differential equations and Lyapunov functionals. We introduce the concept of va...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Afonso Suzete M.
da Silva Márcia R.
Dokumentumtípus: Folyóirat
Megjelent: 2019
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet - retardált, Differenciálegyenlet
doi:10.14232/ejqtde.2019.1.18

Online Access:http://acta.bibl.u-szeged.hu/58099
Leíró adatok
Tartalmi kivonat:We consider a class of retarded functional differential equations with preassigned moments of impulsive effect and we study the Lipschitz stability of solutions of these equations using the theory of generalized ordinary differential equations and Lyapunov functionals. We introduce the concept of variational Lipschitz stability and Lipschitz stability for generalized ordinary differential equations and we develop the theory in this direction by establishing conditions for the trivial solutions of generalized ordinary differential equations to be variationally Lipschitz stable. Thereby, we apply the results to get the corresponding ones for impulsive functional differential equations.
Terjedelem/Fizikai jellemzők:1-18
ISSN:1417-3875