Maps between the positive definite cones of operator algebras preserving a norm of a geodesic correspondence
We prove that any bijective map between the positive definite cones of von Neumann algebras which preserves a certain unitarily invariant norm of a particular weighted geometric mean of elements is essentially (up to two-sided multiplication by an invertible positive element) equal to the restrictio...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2018
|
Sorozat: | Acta scientiarum mathematicarum
84 No. 3-4 |
Kulcsszavak: | Algebra |
doi: | 10.14232/actasm-018-514-x |
Online Access: | http://acta.bibl.u-szeged.hu/56925 |
LEADER | 01088nab a2200205 i 4500 | ||
---|---|---|---|
001 | acta56925 | ||
005 | 20210325154500.0 | ||
008 | 190130s2018 hu o 0|| zxx d | ||
022 | |a 0001-6969 | ||
024 | 7 | |a 10.14232/actasm-018-514-x |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a zxx | ||
100 | 1 | |a Molnár Lajos | |
245 | 1 | 0 | |a Maps between the positive definite cones of operator algebras preserving a norm of a geodesic correspondence |h [elektronikus dokumentum] / |c Molnár Lajos |
260 | |c 2018 | ||
300 | |a 451-463 | ||
490 | 0 | |a Acta scientiarum mathematicarum |v 84 No. 3-4 | |
520 | 3 | |a We prove that any bijective map between the positive definite cones of von Neumann algebras which preserves a certain unitarily invariant norm of a particular weighted geometric mean of elements is essentially (up to two-sided multiplication by an invertible positive element) equal to the restriction of a Jordan *-isomorphism between the algebras. | |
695 | |a Algebra | ||
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/56925/1/math_084_numb_003-004_451-463.pdf |z Dokumentum-elérés |