Maps between the positive definite cones of operator algebras preserving a norm of a geodesic correspondence

We prove that any bijective map between the positive definite cones of von Neumann algebras which preserves a certain unitarily invariant norm of a particular weighted geometric mean of elements is essentially (up to two-sided multiplication by an invertible positive element) equal to the restrictio...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Molnár Lajos
Dokumentumtípus: Cikk
Megjelent: 2018
Sorozat:Acta scientiarum mathematicarum 84 No. 3-4
Kulcsszavak:Algebra
doi:10.14232/actasm-018-514-x

Online Access:http://acta.bibl.u-szeged.hu/56925
LEADER 01088nab a2200205 i 4500
001 acta56925
005 20210325154500.0
008 190130s2018 hu o 0|| zxx d
022 |a 0001-6969 
024 7 |a 10.14232/actasm-018-514-x  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Molnár Lajos 
245 1 0 |a Maps between the positive definite cones of operator algebras preserving a norm of a geodesic correspondence  |h [elektronikus dokumentum] /  |c  Molnár Lajos 
260 |c 2018 
300 |a 451-463 
490 0 |a Acta scientiarum mathematicarum  |v 84 No. 3-4 
520 3 |a We prove that any bijective map between the positive definite cones of von Neumann algebras which preserves a certain unitarily invariant norm of a particular weighted geometric mean of elements is essentially (up to two-sided multiplication by an invertible positive element) equal to the restriction of a Jordan *-isomorphism between the algebras. 
695 |a Algebra 
856 4 0 |u http://acta.bibl.u-szeged.hu/56925/1/math_084_numb_003-004_451-463.pdf  |z Dokumentum-elérés