Existence of solutions for perturbed fourth order elliptic equations with variable exponents

Using variational methods, we study the existence and multiplicity of solutions for a class of fourth order elliptic equations of the form 2 p(x) u − M �R 1 p(x) |∇u| p(x) dx� ∆p(x)u = f(x, u) in Ω, u = ∆u = 0 on ∂Ω, where Ω ⊂ RN, N ≥ 3, is a smooth bounded domain, ∆ 2 p(x) u = ∆(|∆u| p(x)−2∆u) is t...

Full description

Saved in:
Bibliographic Details
Main Author: Thanh Chung Nguyen
Format: Serial
Published: 2018
Series:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet - elliptikus, Kirchhoff típusú problémák
doi:10.14232/ejqtde.2018.1.96

Online Access:http://acta.bibl.u-szeged.hu/56908
Description
Summary:Using variational methods, we study the existence and multiplicity of solutions for a class of fourth order elliptic equations of the form 2 p(x) u − M �R 1 p(x) |∇u| p(x) dx� ∆p(x)u = f(x, u) in Ω, u = ∆u = 0 on ∂Ω, where Ω ⊂ RN, N ≥ 3, is a smooth bounded domain, ∆ 2 p(x) u = ∆(|∆u| p(x)−2∆u) is the operator of fourth order called the p(x)-biharmonic operator, ∆p(x)u = div |∇u| p(x)−2∇u is the p(x)-Laplacian, p : Ω → R is a log-Hölder continuous function, M : [0, +∞) → R and f : Ω × R → R are two continuous functions satisfying some certain condition.
Physical Description:1-19
ISSN:1417-3875