Bifurcation of critical periods of a quartic system
For the polynomial system x˙ = ix + xx¯(ax2 + bxx¯ + cx¯ 2 ) the study of critical period bifurcations is performed. Using calculations with algorithms of computational commutative algebra it is shown that at most two critical periods can bifurcate from any nonlinear center of the system.
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2018
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Bifurkáció, Polinom |
Online Access: | http://acta.bibl.u-szeged.hu/55746 |
Tartalmi kivonat: | For the polynomial system x˙ = ix + xx¯(ax2 + bxx¯ + cx¯ 2 ) the study of critical period bifurcations is performed. Using calculations with algorithms of computational commutative algebra it is shown that at most two critical periods can bifurcate from any nonlinear center of the system. |
---|---|
Terjedelem/Fizikai jellemzők: | 1-18 |
ISSN: | 1417-3875 |