Constant sign and nodal solutions for nonhomogeneous Robin boundary value problems with asymmetric reactions
We study a nonlinear, nonhomogeneous elliptic equation with an asymmetric reaction term depending on a positive parameter, coupled with Robin boundary conditions. Under appropriate hypotheses on both the leading differential operator and the reaction, we prove that, if the parameter is small enough,...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2018
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet - elliptikus, Differenciálegyenlet - nemlineáris, Differenciálegyenlet - határérték probléma |
Online Access: | http://acta.bibl.u-szeged.hu/55741 |
Tartalmi kivonat: | We study a nonlinear, nonhomogeneous elliptic equation with an asymmetric reaction term depending on a positive parameter, coupled with Robin boundary conditions. Under appropriate hypotheses on both the leading differential operator and the reaction, we prove that, if the parameter is small enough, the problem admits at least four nontrivial solutions: two of such solutions are positive, one is negative, and one is sign-changing. Our approach is variational, based on critical point theory, Morse theory, and truncation techniques. |
---|---|
Terjedelem/Fizikai jellemzők: | 1-28 |
ISSN: | 1417-3875 |