Controllability of strongly degenerate parabolic problems with strongly singular potentials
We prove a null controllability result for a parabolic Dirichlet problem with non smooth coefficients in presence of strongly singular potentials and a coefficient degenerating at an interior point. We cover the case of weights falling out the class of Muckenhoupt functions, so that no Hardy-type in...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2018
|
Sorozat: | Electronic journal of qualitative theory of differential equations : special edition
3 No. 50 |
Kulcsszavak: | Függvény, Matematikai modell |
Online Access: | http://acta.bibl.u-szeged.hu/55720 |
Tartalmi kivonat: | We prove a null controllability result for a parabolic Dirichlet problem with non smooth coefficients in presence of strongly singular potentials and a coefficient degenerating at an interior point. We cover the case of weights falling out the class of Muckenhoupt functions, so that no Hardy-type inequality is available; for instance, we can consider Coulomb-type potentials. However, through a cut-off function method, we recover the desired controllability result. |
---|---|
Terjedelem/Fizikai jellemzők: | 1-11 |
ISSN: | 1417-3875 |