On sensitivity analysis of parameters for fractional differential equations with Caputo derivatives
In this paper, we discuss the effect of parameter variations on the performance of fractional differential equations and give the concept of fractional sensitivity functions and fractional sensitivity equations. Meanwhile, by employing Laplace transform and the inverse Laplace transform, some main r...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2016
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenletek |
Online Access: | http://acta.bibl.u-szeged.hu/55458 |
LEADER | 01251nas a2200217 i 4500 | ||
---|---|---|---|
001 | acta55458 | ||
005 | 20200729131154.0 | ||
008 | 181106s2016 hu o 0|| zxx d | ||
022 | |a 1417-3875 | ||
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a zxx | ||
100 | 1 | |a Guo Yuxiang | |
245 | 1 | 3 | |a On sensitivity analysis of parameters for fractional differential equations with Caputo derivatives |h [elektronikus dokumentum] / |c Guo Yuxiang |
260 | |c 2016 | ||
300 | |a 1-17 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a In this paper, we discuss the effect of parameter variations on the performance of fractional differential equations and give the concept of fractional sensitivity functions and fractional sensitivity equations. Meanwhile, by employing Laplace transform and the inverse Laplace transform, some main results on fractional differential equations are proposed. Finally, two simple examples with numerical simulations are provided to show the validity and feasibility of the proposed theorem. | |
695 | |a Differenciálegyenletek | ||
700 | 0 | 1 | |a Ma Baoli |e aut |
700 | 0 | 1 | |a Wu Ranchao |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/55458/1/ejqtde_2016_118.pdf |z Dokumentum-elérés |