Initial algebra for a system of right-linear functors

In 2003 we showed that right-linear systems of equations over regular expressions, when interpreted in a category of trees, have a solution whenever they enjoy a specific property that we called hierarchicity and that is instrumental to avoid critical mutual recursive definitions. In this note, we p...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Labella Anna
Nicola Rocco de
Dokumentumtípus: Cikk
Megjelent: 2017
Sorozat:Acta cybernetica 23 No. 1
Kulcsszavak:Algebra, Lineáris függvények
Tárgyszavak:
doi:10.14232/actacyb.23.1.2017.12

Online Access:http://acta.bibl.u-szeged.hu/50070
LEADER 01376nab a2200253 i 4500
001 acta50070
005 20220620152445.0
008 180212s2017 hu o 0|| eng d
022 |a 0324-721X 
024 7 |a 10.14232/actacyb.23.1.2017.12  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Labella Anna 
245 1 0 |a Initial algebra for a system of right-linear functors  |h [elektronikus dokumentum] /  |c  Labella Anna 
260 |c 2017 
300 |a 191-201 
490 0 |a Acta cybernetica  |v 23 No. 1 
520 3 |a In 2003 we showed that right-linear systems of equations over regular expressions, when interpreted in a category of trees, have a solution whenever they enjoy a specific property that we called hierarchicity and that is instrumental to avoid critical mutual recursive definitions. In this note, we prove that a right-linear system of polynomial endofunctors on a cocartesian monoidal closed category which enjoys parameterized left list arithmeticity, has an initial algebra, provided it satisfies a property similar to hierarchicity. 
650 4 |a Természettudományok 
650 4 |a Matematika 
650 4 |a Számítás- és információtudomány 
695 |a Algebra, Lineáris függvények 
700 0 1 |a Nicola Rocco de  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/50070/1/actacyb_23_1_2017_12.pdf  |z Dokumentum-elérés