Initial algebra for a system of right-linear functors
In 2003 we showed that right-linear systems of equations over regular expressions, when interpreted in a category of trees, have a solution whenever they enjoy a specific property that we called hierarchicity and that is instrumental to avoid critical mutual recursive definitions. In this note, we p...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2017
|
Sorozat: | Acta cybernetica
23 No. 1 |
Kulcsszavak: | Algebra, Lineáris függvények |
Tárgyszavak: | |
doi: | 10.14232/actacyb.23.1.2017.12 |
Online Access: | http://acta.bibl.u-szeged.hu/50070 |
LEADER | 01376nab a2200253 i 4500 | ||
---|---|---|---|
001 | acta50070 | ||
005 | 20220620152445.0 | ||
008 | 180212s2017 hu o 0|| eng d | ||
022 | |a 0324-721X | ||
024 | 7 | |a 10.14232/actacyb.23.1.2017.12 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Labella Anna | |
245 | 1 | 0 | |a Initial algebra for a system of right-linear functors |h [elektronikus dokumentum] / |c Labella Anna |
260 | |c 2017 | ||
300 | |a 191-201 | ||
490 | 0 | |a Acta cybernetica |v 23 No. 1 | |
520 | 3 | |a In 2003 we showed that right-linear systems of equations over regular expressions, when interpreted in a category of trees, have a solution whenever they enjoy a specific property that we called hierarchicity and that is instrumental to avoid critical mutual recursive definitions. In this note, we prove that a right-linear system of polynomial endofunctors on a cocartesian monoidal closed category which enjoys parameterized left list arithmeticity, has an initial algebra, provided it satisfies a property similar to hierarchicity. | |
650 | 4 | |a Természettudományok | |
650 | 4 | |a Matematika | |
650 | 4 | |a Számítás- és információtudomány | |
695 | |a Algebra, Lineáris függvények | ||
700 | 0 | 1 | |a Nicola Rocco de |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/50070/1/actacyb_23_1_2017_12.pdf |z Dokumentum-elérés |