Initial algebra for a system of right-linear functors

In 2003 we showed that right-linear systems of equations over regular expressions, when interpreted in a category of trees, have a solution whenever they enjoy a specific property that we called hierarchicity and that is instrumental to avoid critical mutual recursive definitions. In this note, we p...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Labella Anna
Nicola Rocco de
Dokumentumtípus: Cikk
Megjelent: 2017
Sorozat:Acta cybernetica 23 No. 1
Kulcsszavak:Algebra, Lineáris függvények
Tárgyszavak:
doi:10.14232/actacyb.23.1.2017.12

Online Access:http://acta.bibl.u-szeged.hu/50070
Leíró adatok
Tartalmi kivonat:In 2003 we showed that right-linear systems of equations over regular expressions, when interpreted in a category of trees, have a solution whenever they enjoy a specific property that we called hierarchicity and that is instrumental to avoid critical mutual recursive definitions. In this note, we prove that a right-linear system of polynomial endofunctors on a cocartesian monoidal closed category which enjoys parameterized left list arithmeticity, has an initial algebra, provided it satisfies a property similar to hierarchicity.
Terjedelem/Fizikai jellemzők:191-201
ISSN:0324-721X