On the projection onto a finitely generated cone

In the paper we study the properties of the projection onto a finitely generated cone. We show that this map is made up of finitely many linear parts with a structure resembling the facial structure of the finitely generated cone. An economical (regarding storage) algorithm is also presented for cal...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Ujvári Miklós
Dokumentumtípus: Cikk
Megjelent: 2016
Sorozat:Acta cybernetica 22 No. 3
Kulcsszavak:Algoritmus, Programozás
Tárgyszavak:
doi:10.14232/actacyb.22.3.2016.7

Online Access:http://acta.bibl.u-szeged.hu/40268
Leíró adatok
Tartalmi kivonat:In the paper we study the properties of the projection onto a finitely generated cone. We show that this map is made up of finitely many linear parts with a structure resembling the facial structure of the finitely generated cone. An economical (regarding storage) algorithm is also presented for calculating the projection of a fixed vector, based on Lemke's algorithm to solve a linear complementarity problem. Some remarks on the conical inverse (a generalization of the Moore-Penrose generalized inverse) conclude the paper.
Terjedelem/Fizikai jellemzők:657-672
ISSN:0324-721X