On a property of non liouville numbers
Let α be a non Liouville number and let f(x) = αxr + ar−1xr−1 + ··· + a1x+a0 ϵ R[x] be a polynomial of positive degree r. We consider the sequence (yn)n≥1 defined by yn = f(h(n)), where h belongs to a certain family of arithmetic functions and show that (yn)n≥1 is uniformly distributed modulo 1....
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2015
|
Sorozat: | Acta cybernetica
22 No. 2 |
Kulcsszavak: | Aritmetika |
Tárgyszavak: | |
doi: | 10.14232/actacyb.22.2.2015.6 |
Online Access: | http://acta.bibl.u-szeged.hu/36209 |
Tartalmi kivonat: | Let α be a non Liouville number and let f(x) = αxr + ar−1xr−1 + ··· + a1x+a0 ϵ R[x] be a polynomial of positive degree r. We consider the sequence (yn)n≥1 defined by yn = f(h(n)), where h belongs to a certain family of arithmetic functions and show that (yn)n≥1 is uniformly distributed modulo 1. |
---|---|
Terjedelem/Fizikai jellemzők: | 335-347 |
ISSN: | 0324-721X |