Approximation of the Euclidean distance by Chamfer distances

Chamfer distances play an important role in the theory of distance transforms. Though the determination of the exact Euclidean distance transform is also a well investigated area, the classical chamfering method based upon "small" neighborhoods still outperforms it e.g. in terms of computa...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Hajdu András
Hajdu Lajos
Tijdeman Robert
Dokumentumtípus: Cikk
Megjelent: 2012
Sorozat:Acta cybernetica 20 No. 3
Kulcsszavak:Számítástechnika, Kibernetika, Matematika
Tárgyszavak:
doi:10.14232/actacyb.20.3.2012.3

Online Access:http://acta.bibl.u-szeged.hu/30838
Leíró adatok
Tartalmi kivonat:Chamfer distances play an important role in the theory of distance transforms. Though the determination of the exact Euclidean distance transform is also a well investigated area, the classical chamfering method based upon "small" neighborhoods still outperforms it e.g. in terms of computation time. In this paper we determine the best possible maximum relative error of chamfer distances under various boundary conditions. In each case some best approximating sequences are explicitly given. Further, because of possible practical interest, we give all best approximating sequences in case of small (i.e. 5x5 and 7x7) neighborhoods.
Terjedelem/Fizikai jellemzők:399-417
ISSN:0324-721X