Complexity of problems concerning reset words for some partial cases of automata
A word w is called a reset word for a deterministic finite automaton A if it maps all states of A to one state. A word w is called a compressing to M states for a deterministic finite automaton A if it maps all states of A to at most M states. We consider several subclasses of automata: aperiodic, D...
Elmentve itt :
Szerző: | |
---|---|
Testületi szerző: | |
Dokumentumtípus: | Cikk |
Megjelent: |
2009
|
Sorozat: | Acta cybernetica
19 No. 2 |
Kulcsszavak: | Számítástechnika, Kibernetika |
Tárgyszavak: | |
Online Access: | http://acta.bibl.u-szeged.hu/12877 |
Tartalmi kivonat: | A word w is called a reset word for a deterministic finite automaton A if it maps all states of A to one state. A word w is called a compressing to M states for a deterministic finite automaton A if it maps all states of A to at most M states. We consider several subclasses of automata: aperiodic, D-trivial, monotonic, partially monotonic automata and automata with a zero state. For these subclasses we study the computational complexity of the following problems. Does there exist a reset word for a given automaton? Does there exist a reset word of given length for a given automaton? What is the length of the shortest reset word for a given automaton? Moreover, we consider complexity of the same problems for compressing words. |
---|---|
Terjedelem/Fizikai jellemzők: | 517-536 |
ISSN: | 0324-721X |