Complex independent process analysis

We present a general framework for the search of hidden independent processes in the complex domain. The task is to estimate the hidden independent multidimensional complex-valued components observing only the mixture of the processes driven by them. In our model (i) the hidden independent processes...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Szabó Zoltán
Lőrincz András
Dokumentumtípus: Cikk
Megjelent: 2009
Sorozat:Acta cybernetica 19 No. 1
Kulcsszavak:Számítástechnika, Kibernetika
Tárgyszavak:
doi:10.14232/actacyb.19.1.2009.12

Online Access:http://acta.bibl.u-szeged.hu/12860
Leíró adatok
Tartalmi kivonat:We present a general framework for the search of hidden independent processes in the complex domain. The task is to estimate the hidden independent multidimensional complex-valued components observing only the mixture of the processes driven by them. In our model (i) the hidden independent processes can be multidimensional, they may be subject to (ii) moving averaging, or may evolve in an autoregressive manner, or (iii) they can be non-stationary. These assumptions are covered by integrated autoregressive moving average processes and thus our task is to solve their complex extensions. We show how to reduce the undercomplete version of complex integrated autoregressive moving average processes to real independent subspace analysis that we can solve. Simulations illustrate the working of the algorithm.
Terjedelem/Fizikai jellemzők:177-190
ISSN:0324-721X