On monogenic nondeterministic automata

A finite automaton is said to be directable if it has an input word, a directing word, which takes it from every state into the same state. For nondeterministic (n.d.) automata, directability can be generalized in several ways, three such notions, D1-, D2-, and D3-directability, are used. In this pa...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Imreh Csanád
Ito Masami
Dokumentumtípus: Cikk
Megjelent: 2008
Sorozat:Acta cybernetica 18 No. 4
Kulcsszavak:Számítástechnika, Kibernetika, Automaták
Tárgyszavak:
Online Access:http://acta.bibl.u-szeged.hu/12846
Leíró adatok
Tartalmi kivonat:A finite automaton is said to be directable if it has an input word, a directing word, which takes it from every state into the same state. For nondeterministic (n.d.) automata, directability can be generalized in several ways, three such notions, D1-, D2-, and D3-directability, are used. In this paper, we consider monogenic n.d. automata, and for each i = 1,2,3, we present sharp bounds for the maximal lengths of the shortest Di-directing words.
Terjedelem/Fizikai jellemzők:777-782
ISSN:0324-721X