On monogenic nondeterministic automata
A finite automaton is said to be directable if it has an input word, a directing word, which takes it from every state into the same state. For nondeterministic (n.d.) automata, directability can be generalized in several ways, three such notions, D1-, D2-, and D3-directability, are used. In this pa...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2008
|
Sorozat: | Acta cybernetica
18 No. 4 |
Kulcsszavak: | Számítástechnika, Kibernetika, Automaták |
Tárgyszavak: | |
Online Access: | http://acta.bibl.u-szeged.hu/12846 |
Tartalmi kivonat: | A finite automaton is said to be directable if it has an input word, a directing word, which takes it from every state into the same state. For nondeterministic (n.d.) automata, directability can be generalized in several ways, three such notions, D1-, D2-, and D3-directability, are used. In this paper, we consider monogenic n.d. automata, and for each i = 1,2,3, we present sharp bounds for the maximal lengths of the shortest Di-directing words. |
---|---|
Terjedelem/Fizikai jellemzők: | 777-782 |
ISSN: | 0324-721X |