InfoMax Bayesian learning of the Furuta pendulum
We have studied the InfoMax (D-optimality) learning for the two-link Furuta pendulum. We compared InfoMax and random learning methods. The InfoMax learning method won by a large margin, it visited a larger domain and provided better approximation during the same time interval. The advantages and the...
Elmentve itt :
Szerzők: | |
---|---|
Testületi szerző: | |
Dokumentumtípus: | Cikk |
Megjelent: |
2008
|
Sorozat: | Acta cybernetica
18 No. 4 |
Kulcsszavak: | Számítástechnika, Kibernetika |
Tárgyszavak: | |
Online Access: | http://acta.bibl.u-szeged.hu/12839 |
Tartalmi kivonat: | We have studied the InfoMax (D-optimality) learning for the two-link Furuta pendulum. We compared InfoMax and random learning methods. The InfoMax learning method won by a large margin, it visited a larger domain and provided better approximation during the same time interval. The advantages and the limitations of the InfoMax solution are treated. |
---|---|
Terjedelem/Fizikai jellemzők: | 637-649 |
ISSN: | 0324-721X |