Automata on infinite biposets

Bisemigroups are algebras equipped with two independent associative operations. Labeled finite sp-biposets may serve as a possible representation of the elements of the free bisemigroups. For finite sp-biposets, an accepting device, called parenthesizing automaton, was introduced in [6], and it was...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Németh Zoltán L.
Testületi szerző: International Conference on Automata and Formal Languages (11.) (2005) (Dobogókő)
Dokumentumtípus: Cikk
Megjelent: 2006
Sorozat:Acta cybernetica 17 No. 4
Kulcsszavak:Számítástechnika, Kibernetika, Automaták
Tárgyszavak:
Online Access:http://acta.bibl.u-szeged.hu/12795
Leíró adatok
Tartalmi kivonat:Bisemigroups are algebras equipped with two independent associative operations. Labeled finite sp-biposets may serve as a possible representation of the elements of the free bisemigroups. For finite sp-biposets, an accepting device, called parenthesizing automaton, was introduced in [6], and it was proved that its expressive power is equivalent to both algebraic recognizability and monadic second order definability. In this paper, we show, how this concept of parenthesizing automaton can be generalized for infinite biposets in a way that the equivalence of regularity (defined by acceptance with automata), recognizability (defined by homomorphisms and finite ω-bisemigroups) and MSO-definability remains true.
Terjedelem/Fizikai jellemzők:765-797
ISSN:0324-721X