Retractable state-finite automata without outputs
A homomorphism of an automaton A without outputs onto a subautomaton B of A is called a retract homomorphism if it leaves the elements of B fixed. An automaton A is called a retractable automaton if, for every subautomaton B of A, there is a retract homomorphism of A onto B. In [1] and [3], special...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2004
|
Sorozat: | Acta cybernetica
16 No. 3 |
Kulcsszavak: | Számítástechnika, Nyelvészet - számítógép alkalmazása |
Tárgyszavak: | |
Online Access: | http://acta.bibl.u-szeged.hu/12730 |
Tartalmi kivonat: | A homomorphism of an automaton A without outputs onto a subautomaton B of A is called a retract homomorphism if it leaves the elements of B fixed. An automaton A is called a retractable automaton if, for every subautomaton B of A, there is a retract homomorphism of A onto B. In [1] and [3], special retractable automata are examined. The purpose of this paper is to give a construction for state-finite retractable automata without outputs. |
---|---|
Terjedelem/Fizikai jellemzők: | 399-409 |
ISSN: | 0324-721X |