Retractable state-finite automata without outputs

A homomorphism of an automaton A without outputs onto a subautomaton B of A is called a retract homomorphism if it leaves the elements of B fixed. An automaton A is called a retractable automaton if, for every subautomaton B of A, there is a retract homomorphism of A onto B. In [1] and [3], special...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Nagy Attila
Dokumentumtípus: Cikk
Megjelent: 2004
Sorozat:Acta cybernetica 16 No. 3
Kulcsszavak:Számítástechnika, Nyelvészet - számítógép alkalmazása
Tárgyszavak:
Online Access:http://acta.bibl.u-szeged.hu/12730
Leíró adatok
Tartalmi kivonat:A homomorphism of an automaton A without outputs onto a subautomaton B of A is called a retract homomorphism if it leaves the elements of B fixed. An automaton A is called a retractable automaton if, for every subautomaton B of A, there is a retract homomorphism of A onto B. In [1] and [3], special retractable automata are examined. The purpose of this paper is to give a construction for state-finite retractable automata without outputs.
Terjedelem/Fizikai jellemzők:399-409
ISSN:0324-721X