Various hyperplane classifiers using kernel feature spaces

In this paper we introduce a new family of hyperplane classifiers. But, in contrast to Support Vector Machines (SVM) - where a constrained quadratic optimization is used - some of the proposed methods lead to the unconstrained minimization of convex functions while others merely require solving a li...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Kovács Kornél
Kocsor András
Testületi szerző: Conference for PhD Students in Computer Science (3.) (2002) (Szeged)
Dokumentumtípus: Cikk
Megjelent: 2003
Sorozat:Acta cybernetica 16 No. 2
Kulcsszavak:Számítástechnika, Kibernetika
Tárgyszavak:
Online Access:http://acta.bibl.u-szeged.hu/12722
Leíró adatok
Tartalmi kivonat:In this paper we introduce a new family of hyperplane classifiers. But, in contrast to Support Vector Machines (SVM) - where a constrained quadratic optimization is used - some of the proposed methods lead to the unconstrained minimization of convex functions while others merely require solving a linear system of equations. So that the efficiency of these methods could be checked, classification tests were conducted on standard databases. In our evaluation, classification results of SVM were of course used as a general point of reference, which we found were outperformed in many cases.
Terjedelem/Fizikai jellemzők:271-278
ISSN:0324-721X