On the exact solution of the Euclidean three-matching problem

Three-Matching Problem (3MP) is an NP-complete graph problem which has applications in the field of inserting electronic components on a printed circuit board. In 3MP we want to partition a set of n = 31 points into I disjoint subsets, each containing three points (triplets) so that the total cost o...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Magyar Gábor
Johnsson Mika
Nevalainen Olli
Testületi szerző: Conference for PhD Students in Computer Science (1.) (1998) (Szeged)
Dokumentumtípus: Cikk
Megjelent: 1999
Sorozat:Acta cybernetica 14 No. 2
Kulcsszavak:Számítástechnika, Kibernetika, Algoritmus
Tárgyszavak:
Online Access:http://acta.bibl.u-szeged.hu/12632
Leíró adatok
Tartalmi kivonat:Three-Matching Problem (3MP) is an NP-complete graph problem which has applications in the field of inserting electronic components on a printed circuit board. In 3MP we want to partition a set of n = 31 points into I disjoint subsets, each containing three points (triplets) so that the total cost of the triplets is minimal. We consider the problem where the cost Cijk of a triplet is the sum of the lengths of the two shortest edges of the triangle (i, j, k)\ the reason for this assumption is the nature of the practical problems. In this paper we discuss the optimal solution of 3MP. W e give two different integer formulations and several lower bounds of the problem based on the Lagrangian relaxations of the integer programs. The different lower bounds are evaluated by empirical comparisons. We construct branch-andbound procedures for solving 3MP by completing the best lower bound with appropriate branching operations. The resulting procedures are compared to our previous exact method and to general MIP solvers.
Terjedelem/Fizikai jellemzők:357-366
ISSN:0324-721X