Revealing the excitation energy transfer network of Light-Harvesting Complex II by a phenomenological analysis of two-dimensional electronic spectra at 77 K

Energy equilibration in light-harvesting antenna systems normally occurs before energy is transferred to a reaction center. The equilibration mechanism is a characteristic of the excitation energy transfer (EET) network of the antenna. Characterizing this network is crucial in understanding the firs...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Thanh Nhut Do
Huerta-Viga Adriana
Akhtar Parveen
Hoang Long Nguyen
Nowakowski Pawel J.
Khyasudeen M. Faisal
Lambrev Petar
Tan Howe-Siang
Dokumentumtípus: Cikk
Megjelent: 2019
Sorozat:JOURNAL OF CHEMICAL PHYSICS 151 No. 20
Tárgyszavak:
doi:10.1063/1.5125744

mtmt:31095887
Online Access:http://publicatio.bibl.u-szeged.hu/33454
LEADER 02757nab a2200301 i 4500
001 publ33454
005 20240620145613.0
008 240620s2019 hu o 000 eng d
022 |a 0021-9606 
024 7 |a 10.1063/1.5125744  |2 doi 
024 7 |a 31095887  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a eng 
100 1 |a Thanh Nhut Do 
245 1 0 |a Revealing the excitation energy transfer network of Light-Harvesting Complex II by a phenomenological analysis of two-dimensional electronic spectra at 77 K  |h [elektronikus dokumentum] /  |c  Thanh Nhut Do 
260 |c 2019 
300 |a 12 
490 0 |a JOURNAL OF CHEMICAL PHYSICS  |v 151 No. 20 
520 3 |a Energy equilibration in light-harvesting antenna systems normally occurs before energy is transferred to a reaction center. The equilibration mechanism is a characteristic of the excitation energy transfer (EET) network of the antenna. Characterizing this network is crucial in understanding the first step of photosynthesis. We present our phenomenology-based analysis procedure and results in obtaining the excitonic energy levels, spectral linewidths, and transfer-rate matrix of Light-Harvesting Complex II directly from its 2D electronic spectra recorded at 77 K with waiting times between 100 fs to 100 ps. Due to the restriction of the models and complexity of the system, a unique EET network cannot be constructed. Nevertheless, a recurring pattern of energy transfer with very similar overall time scales between spectral components (excitons) is consistently obtained. The models identify a "bottleneck" state in the 664-668 nm region although with a relatively shorter lifetime (similar to 4-6 ps) of this state compared to previous studies. The model also determines three terminal exciton states at 675, 677-678, and 680-681 nm that are weakly coupled to each other. The excitation energy equilibration between the three termini is found to be independent of the initial excitation conditions, which is a crucial design for the light-harvesting complexes to ensure the energy flow under different light conditions and avoid excitation trapping. We proposed two EET schemes with tentative pigment assignments based on the interpretation of the modeling results together with previous structure-based calculations and spectroscopic observables. Published under license by AIP Publishing. 
650 4 |a Fizikai tudományok 
700 0 2 |a Huerta-Viga Adriana  |e aut 
700 0 2 |a Akhtar Parveen  |e aut 
700 0 2 |a Hoang Long Nguyen  |e aut 
700 0 2 |a Nowakowski Pawel J.  |e aut 
700 0 2 |a Khyasudeen M. Faisal  |e aut 
700 0 2 |a Lambrev Petar  |e aut 
700 0 2 |a Tan Howe-Siang  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/33454/1/31095887.pdf  |z Dokumentum-elérés