Vibrational mode-specificity in the dynamics of the OH− + CH3I multi-channel reaction

We report a comprehensive characterization of the vibrational mode-specific dynamics of the OH− + CH3I reaction. Quasi-classical trajectory simulations are performed at four different collision energies on our previously-developed full-dimensional high-level ab initio potential energy surface in ord...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Tasi Domonkos Attila
Czakó Gábor
Dokumentumtípus: Cikk
Megjelent: 2024
Sorozat:JOURNAL OF CHEMICAL PHYSICS 160 No. 4
Tárgyszavak:
doi:10.1063/5.0189561

mtmt:34564907
Online Access:http://publicatio.bibl.u-szeged.hu/31858
LEADER 02216nab a2200229 i 4500
001 publ31858
005 20240523093053.0
008 240523s2024 hu o 000 eng d
022 |a 0021-9606 
024 7 |a 10.1063/5.0189561  |2 doi 
024 7 |a 34564907  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a eng 
100 1 |a Tasi Domonkos Attila 
245 1 0 |a Vibrational mode-specificity in the dynamics of the OH− + CH3I multi-channel reaction  |h [elektronikus dokumentum] /  |c  Tasi Domonkos Attila 
260 |c 2024 
300 |a 12 
490 0 |a JOURNAL OF CHEMICAL PHYSICS  |v 160 No. 4 
520 3 |a We report a comprehensive characterization of the vibrational mode-specific dynamics of the OH− + CH3I reaction. Quasi-classical trajectory simulations are performed at four different collision energies on our previously-developed full-dimensional high-level ab initio potential energy surface in order to examine the impact of four different normal-mode excitations in the reactants. Considering the 11 possible pathways of OH− + CH3I, pronounced mode-specificity is observed in reactivity: In general, the excitations of the OH− stretching and CH stretching exert the greatest influence on the channels. For the SN2 and proton-abstraction products, the reactant initial attack angle and the product scattering angle distributions do not show major mode-specific features, except for SN2 at higher collision energies, where forward scattering is promoted by the CI stretching and CH stretching excitations. The post-reaction energy flow is also examined for SN2 and proton abstraction, and it is unveiled that the excess vibrational excitation energies rather transfer into the product vibrational energy because the translational and rotational energy distributions of the products do not represent significant mode-specificity. Moreover, in the course of proton abstraction, the surplus vibrational energy in the OH− reactant mostly remains in the H2O product owing to the prevailing dominance of the direct stripping mechanism. 
650 4 |a Kémiai tudományok 
700 0 1 |a Czakó Gábor  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/31858/2/34564907_megjelent.pdf  |z Dokumentum-elérés