The density of planar sets avoiding unit distances
By improving upon previous estimates on a problem posed by L. Moser, we prove a conjecture of Erdős that the density of any measurable planar set avoiding unit distances is less than 1/4. Our argument implies the upper bound of 0.2470.
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2024
|
Sorozat: | MATHEMATICAL PROGRAMMING
207 No. 1-2 |
Tárgyszavak: | |
doi: | 10.1007/s10107-023-02012-9 |
mtmt: | 33834838 |
Online Access: | http://publicatio.bibl.u-szeged.hu/29680 |
LEADER | 01089nab a2200265 i 4500 | ||
---|---|---|---|
001 | publ29680 | ||
005 | 20240913080912.0 | ||
008 | 240226s2024 hu o 000 eng d | ||
022 | |a 0025-5610 | ||
024 | 7 | |a 10.1007/s10107-023-02012-9 |2 doi | |
024 | 7 | |a 33834838 |2 mtmt | |
040 | |a SZTE Publicatio Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Ambrus Gergely | |
245 | 1 | 4 | |a The density of planar sets avoiding unit distances |h [elektronikus dokumentum] / |c Ambrus Gergely |
260 | |c 2024 | ||
300 | |a 303-327 | ||
490 | 0 | |a MATHEMATICAL PROGRAMMING |v 207 No. 1-2 | |
520 | 3 | |a By improving upon previous estimates on a problem posed by L. Moser, we prove a conjecture of Erdős that the density of any measurable planar set avoiding unit distances is less than 1/4. Our argument implies the upper bound of 0.2470. | |
650 | 4 | |a Matematika | |
700 | 0 | 1 | |a Csiszárik Adrián |e aut |
700 | 0 | 1 | |a Matolcsi Máté |e aut |
700 | 0 | 1 | |a Varga Dániel |e aut |
700 | 0 | 1 | |a Zsámboki Pál |e aut |
856 | 4 | 0 | |u http://publicatio.bibl.u-szeged.hu/29680/1/Unit_Distance_Graphs_FINAL.pdf |z Dokumentum-elérés |