Bol loops and Bruck loops of order pq
Right Bol loops are loops satisfying the identity ((zx)y)x=z((xy)x), and right Bruck loops are right Bol loops satisfying the identity (xy)−1=x−1y−1. Let p and q be odd primes such that p>q. Advancing the research program of Niederreiter and Robinson from 1981, we classify right Bol loops of orde...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2017
|
Sorozat: | JOURNAL OF ALGEBRA
473 |
Tárgyszavak: | |
doi: | 10.1016/j.jalgebra.2016.11.023 |
mtmt: | 3181568 |
Online Access: | http://publicatio.bibl.u-szeged.hu/29125 |
LEADER | 01863nab a2200241 i 4500 | ||
---|---|---|---|
001 | publ29125 | ||
005 | 20231218113723.0 | ||
008 | 231218s2017 hu o 0|| Angol d | ||
022 | |a 0021-8693 | ||
024 | 7 | |a 10.1016/j.jalgebra.2016.11.023 |2 doi | |
024 | 7 | |a 3181568 |2 mtmt | |
040 | |a SZTE Publicatio Repozitórium |b hun | ||
041 | |a Angol | ||
100 | 1 | |a Kinyon Michael K. | |
245 | 1 | 0 | |a Bol loops and Bruck loops of order pq |h [elektronikus dokumentum] / |c Kinyon Michael K. |
260 | |c 2017 | ||
300 | |a 481-512 | ||
490 | 0 | |a JOURNAL OF ALGEBRA |v 473 | |
520 | 3 | |a Right Bol loops are loops satisfying the identity ((zx)y)x=z((xy)x), and right Bruck loops are right Bol loops satisfying the identity (xy)−1=x−1y−1. Let p and q be odd primes such that p>q. Advancing the research program of Niederreiter and Robinson from 1981, we classify right Bol loops of order pq. When q does not divide p2−1, the only right Bol loop of order pq is the cyclic group of order pq. When q divides p2−1, there are precisely (p−q+4)/2 right Bol loops of order pq up to isomorphism, including a unique nonassociative right Bruck loop Bp,q of order pq. Let Q be a nonassociative right Bol loop of order pq. We prove that the right nucleus of Q is trivial, the left nucleus of Q is normal and is equal to the unique subloop of order p in Q, and the right multiplication group of Q has order p2q or p3q. When Q=Bp,q, the right multiplication group of Q is isomorphic to the semidirect product of Zp×Zp with Zq. Finally, we offer computational results as to the number of right Bol loops of order pq up to isotopy. © 2016 Elsevier Inc. | |
650 | 4 | |a Matematika | |
700 | 0 | 1 | |a Nagy Gábor Péter |e aut |
700 | 0 | 1 | |a Vojtěchovský Petr |e aut |
856 | 4 | 0 | |u http://publicatio.bibl.u-szeged.hu/29125/1/KinyonNagyVojtechovskyBolloopsandBruckloopsoforderpq2017.pdf |z Dokumentum-elérés |